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Introduction

Let X1(t), . . . , Xn(t) be partially sampled functional data over individual specific sub-
sets, I1, . . . , In, of a compact interval I. We consider the observed curves as the filtered
processes from i.i.d. latent complete processes Y1(t), . . . , Yn(t) on I by the indicator process
δi(t), i ∈ {1, . . . , n}. Here, we define δi(t) = 1, if Yi(t) is observed, and δi(t) = 0, otherwise.
We assume that latent Yi(t) is elliptically distributed and δi(t) formulates missing patterns
on partially observed trajectories.

The goal of this study is to investigate robust principal component analysis for partially
observed functional data sampled from heavy-tailed elliptical process. (1/4)

Robust PCA for partially observed functional data

based on the robust covariance estimation

•Robust estimation of mean and scale functions
As the first step, we propose to estimate the location and scale functions, µ(t) and

γ(t, t), (denoted as γ(t), hereinafter) based on the pointwise M-estimation. For partially
observed samples Xi(t), . . . , Xn(t), over I1, . . . , In ⊂ I, the proposed M-estimators
marginally solves the following equations for all values of t in parallel.
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for t ∈ I satisfying n(t) > 0, where n(t) =
∑n

i=1 δi(t), Ψ(w) = −ρ′(w) with differentiable
real-valued loss function ρ, Ψ∗(w) = wΨ(w), and η is a positive constant.

•Robust estimation of the scatter function
Motivated by Gnanadesikan and Kettenring (1972), we define the robust correlation

function τ (s, t) for the elliptical process Y (t), over t ∈ I as,

τ (s, t) =
σ2
R{Z(s) + Z(t)} − σ2

R{Z(s)− Z(t)}
σ2
R{Z(s) + Z(t)} + σ2

R{Z(s)− Z(t)}
, (2)

where Z(s) = γ−1/2(s){Y (s) − µ(s)} and Z(t) = γ−1/2(t){Y (t) − µ(t)}, for s, t ∈ I,
and µ(·) and γ(·) are marginal location and scale M-estimators obtained from (1).

Although the choice of σ2
R is flexible, we define the robust scale estimator as σ2

Rκ
(V ) =

E{κ(V )} with mean zero random variable V and the robust loss function κ : R→ R+;
e.g., hampel loss function

κ(x) =


x2, if |x| < a1

2a1(x− a1/2), if a1 ≤ |x| < a2

a1(x− a3)
2/(a2 − a1) + a1(a2 + a3 − a1), if a2 ≤ |x| < a3

a1(a2 + a3 − a1), if a3 ≤ |x|.

(3)

Then we apply the method of moments approach, specifically calculate σ̂2
R(·) in by
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Rκ
{Z∗i (s) + Z∗i (t)} =

∑
i∈Ds,t

κ{Z∗i (s) + Z∗i (t)}/
n∑
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δi(s)δi(t) (4)

and similarly for σ̂2
Rκ
{Z∗i (s)− Z∗i (t)} to obtain τ̂n(s, t).

Then we can obtain the robust covariance function γ(s, t) for the s, t ∈ I as

γ(s, t) = γ1/2(s)γ1/2(t)τ (s, t). (5)

Since the resulting robust correlation matrix based on pairwise computation is not
necessarily positive semidefinite, we adopt the modified calculation, proposed by Marrona
and Zamar (2002), to yield positive definite and approximately affine-equivariant matrix
estimates. Furthermore, we apply the two-dimensional smoothing on it, such as kernel
smoother, to ensure the smooth estimates of the scatter function.

•Functional principal component analysis through robust scatter function
Based on the eigenanalysis of the estimated scatter function, we recover lower-

dimensional subspace of the data using derived eigenfunctions, φ̂k(t), and the corre-
sponding eigenvalues λ̂k for k ∈ {1, . . . , K}.

To deal with missing segments, we adopt Yao et al. (2005) and estimate ξi,k us-
ing conditional expectation of the elliptical distribution. To carry out the discretized
calculation, we evaluate X i = {Xi(ti1), . . . , Xi(tini)}T through a set of discrete grids
{ti1, . . . , tini} ∈ Ii, and use the same grids to obtain φ̂ik = {φ̂k(ti1), . . . , φ̂k(tini)}T ,
µ̂i = {µ̂n(ti1), . . . , µ̂n(tini)}T , and Γ̂i ∈ Rni×ni be the matrix with (`, j)-th element equal
to γ̂(ti`, tij). Then we calculate the k-th score of the i-th trajectory

ξ̂i,k = λ̂kφ̂
T

ikΓ̂
−1

i (X i − µ̂i). (6)

The reconstruction of trajectories for the entire domain, using the first K eigenfunc-
tions, is written as

Ŷi(t) = µ̂i(t) +

K∑
k=1

ξ̂i,kφ̂k(t), (7)

for t ∈ I, and i ∈ {1, . . . , n}. (2/4)

Numerical Experiment

• Simulation setting
First, 100 independent curves are generated from X(t), t ∈ [0, 1], under zero mean

and covariance function C(s, t) =
∑4

i=1 0.5i−1φi(s)φi(t), where φ1(t) = 1, φ2(t) =√
3(2t−1), φ3(t) =

√
5(6t2−6t+ 1), and φ4(t) =

√
7(20t3−30t2 + 12t−1), from three

distributions; (a) Gaussian process; (b) t(3) process; and (c) Gaussian process with α-
contamination, where (1−α)% of total curves are generated from the Gaussian process
and α% of a total curves are sampled from σ(t)ε(t), where ε(t) is the white noise t(3)
process and σ(t) is the scale of variations, following N(2, 102) at each t. We consider the
contamination ratios α = 0.1.

The trajectories are evaluated at a regular grid of 51 points. Then, for each trajectory,
we generate independently a random missing interval on which functional values are
removed by using the setting of Kraus (2015). The randomly selected trajectories are
plotted in Fig. 1.
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Fig. 1: Randomly selected curves from 3 models.

•Competing methods

– Sparse FPCA : FPCA for the sparse longitudinal data (Yao et al., 2005).

– Kraus : FPCA for partially observed functional data, and completion based on the
functional linear ridge regression is performed (Kraus, 2015).

– Robust FPCA : robust FPCA for sparse functional data (Boente and Salibian-Barrera,
2021).

The parameters for each method are selected by 5-fold cross-validation, and the true
dimension of the subspace, K = 4 is used. We repeat 100 times for four cases, and
calculate eigenfunction angle, mean integrated squared error (MISE) for eigenfunctions,
reconstruction and completion for missing parts which are summarized in Tab. 1.

Model Method Eigenfunction MISE Eigenfunction angle Reconstruction MISE Completion MISE

(a)

Sparse FPCA 0.060 (0.039) 0.080 (0.027) 0.023 (0.062) 0.128 (0.370)
Kraus 0.067 (0.047) 0.096 (0.031) . 0.217 (0.195)

Robust Kraus 0.122 (0.087) 0.167 (0.048) . 0.387 (0.221)
Proposed FPCA 0.030 (0.012) 0.207 (0.010) 0.020 (0.011) 0.060 (0.051)

(b)

Sparse FPCA 0.231 (0.231) 0.143 (0.104) 0.099 (0.253) 0.564 (1.302)
Kraus 0.268 (0.258) 0.189 (0.138) . 2.469 (2.964)

Robust Kraus 0.144 (0.092) 0.216 (0.057) . 1.413 (1.082)
Proposed FPCA 0.031 (0.012) 0.208 (0.012) 0.050 (0.034) 0.142 (0.142)

(c)

Sparse FPCA 1.509 (0.404) 1.321 (0.340) 0.879 (0.398) 1.552 (1.476)
Kraus 1.799 (0.103) 1.518 (0.047) . 2.401 (0.500)

Robust Kraus 0.160 (0.124) 0.277 (0.085) . 0.958 (0.364)
Proposed FPCA 0.030 (0.011) 0.207 (0.009) 0.022 (0.013) 0.070 (0.062)

Tab. 1: Average and standard error from 100 repetitions. Boldface indicates the best performance.

Under Gaussian data, four methods show comparable results, while for other heavy-
tailed scenarios Proposed FPCA overall outperforms it in eigenfunction estimation and
completion. (3/4)

Conclusion

• In this study, we investigate the robust principal component analysis based on the robust
covariance estimation for the data from partially observed elliptical process.

• Numerical experiments showed that proposed method provides a stable and robust es-
timation when the data have heavy-tailed behaviors.

• The proposed method can be applicable to various types of data, for example, PM10

concentration which often has missing periods and abnormal trajectories. (4/4)
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