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Introduction

• Functional data analysis (FDA) methods have been widely developed to
address many statistical problems in diverse fields.

• The large complex data acquisition, however, concurrently increases the
chance of containing atypically behaved trajectories or having
imperfections, such as missing values.

• Similar to the multivariate case, a severe drawback of the functional
principal component analysis (FPCA) is its sensitivity to atypical curves
due to its reliance on sample covariance estimation.

• Moreover, such trajectories often include missing functional segments,
which poses challenges in many practical applications.
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Motivating example

PM10 concentration monitoring data
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Figure 1: (a) Subset of the sample of hourly PM10 concentration with black dashed horizontal
line at 100 µg/m3, displaying 24-hour average guideline stipulates by the Ministry of
Environment, Korea, and (b) several trajectories in detail.
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Introduction

• To overcome this problems, we consider the non-Gaussian partially
observed functional data as the filtered elliptical stochastic processes by
the partial sampling process.

• The collected functional data is viewed as the sample path of a
stochastic process, and it enables modeling the partially sampled
trajectories using the missing indicator process.

• Under this framework, we propose implementing the robust FPCA
through the eigenanalysis on the scatter function of the elliptical
process.
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Filtered elliptical stochastic process for partially observed
functional data

• Let X1(t), . . . ,Xn(t) be partially sampled functional data over
individual specific subsets, I1, . . . , In, of a finite interval I.

• We consider the observed curves as the filtered processes from i.i.d.
latent complete processes Y1(t), . . . ,Yn(t) on I by the indicator process
δi(t), i ∈ {1, . . . , n}.

• Here, we define δi(t) = 1, if Yi(t) is observed, and δi(t) = 0, otherwise.
• We assume that latent Yi(t) is elliptically distributed and δi(t)

formulates missing patterns of partially observed trajectories.
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Robust estimation of the location and scale function

• As the first step, we propose to estimate the location and scale
functions, µ(t) and γ(t, t), (denoted as γ(t), hereinafter) based on the
pointwise M-estimation.

• For partially observed samples Xi(t), . . . ,Xn(t), over I1, . . . , In ⊂ I,
the proposed M-estimators marginally solves the following equations
for all values of t in parallel:

n∑
i=1

Ψ

(
δi(t){Xi(t)− µ̂n(t)}

γ̂
1/2
n (t)

)
= 0

1
n(t)

n∑
i=1

Ψ∗

(
δi(t){Xi(t)− µ̂n(t)}

γ̂
1/2
n (t)

)
= η,

(1)

for t ∈ I satisfying n(t) > 0, where n(t) =
∑n

i=1 δi(t),
Ψ(w) = −ρ′(w) with differentiable real-valued loss function ρ,
Ψ∗(w) = wΨ(w), and η is a positive constant.
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Robust estimation of the location and scale function

• If the probability density function (pdf) of marginal distribution for
γ−1/2(t){Y(t)− µ(t)} is f0(y) for all t ∈ I, the proposed M-estimators
under Ψ = f ′0/f0 correspond to the marginal MLE of µ(t) and γ(t).

• For example, if f0 is the pdf of the t(ν), t distribution with ν ≥ 3
degrees of freedom, M-estimators satisfying (1) correspond to the
marginal MLE by choosing Ψ(w) = (ν + 1)w/(ν + w2) and η = 1.

• In practice, marginal density f0 might be unknown, we then can adopt
the robust loss function ρ(·), for example, Huber or bisquare loss, and
use Ψ(·) = −ρ′(·), as an alternative.
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Robust estimation of the scatter function
• Given the marginal location and scale M-estimators, we propose to

estimate the scatter function by extending the robust pairwise
covariance estimation (Gnanadesikan and Kettenring, 1972; Maronna
and Zamar, 2002).

• We define the robust correlation function τ(s, t) for the elliptical
process Y(t), over t ∈ I as,

τ(s, t) =
σ2

R{Z(s) + Z(t)} − σ2
R{Z(s)− Z(t)}

σ2
R{Z(s) + Z(t)}+ σ2

R{Z(s)− Z(t)}
, (2)

where Z(t) = γ−1/2(t){Y(t)− µ(t)}, for s, t ∈ I, µ(·) and γ(·) are
marginal location and scale functions, and σ2

R is the robust scale
estimator.

• Under finite second moments, τ(s, t) is consistent to the ordinary
Cor{Z(s),Z(t)} so that it allows us to write

γ(s, t) = γ1/2(s)γ1/2(t)τ(s, t).
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Robust estimation of the scatter function

• For the estimation of τ(s, t) in (2) under given partially observed
trajectories, we apply the pairwise computation for available complete
pairs of functional values at s and t.

• In other words, for fixed s, t ∈ I, we define a set of a complete pair
{Z∗i (s),Z∗i (t)}i∈Ds,t , where Ds,t = {i : δi(s)δi(t) > 0} and
Z∗i (t) = γ̂

−1/2
n (t){Xi(t)− µ̂n(t)}, for t ∈ Ii with µ̂n(t) and γ̂1/2

n (t)
being obtained from (1).

• Then sample estimate τ̂n(s, t) is calculated based on pairs in Ds,t with
the choice of the robust scale σ2

R.
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Robust estimation of the scatter function

• Although the choice of σ2
R is flexible, we adopt the winsorized variance

(Wilcox, 2013) by defining the robust scale estimator as
σ2

Rκ(V) = E{κ(V)} with mean zero random variable V and the robust
loss function κ : R→ R+; e.g., hampel loss function (Sinova et al.,
2018)

κ(x) =


x2, if |x| < a1

2a1(x − a1/2), if a1 ≤ |x| < a2

a1(x − a3)2/(a2 − a1) + a1(a2 + a3 − a1), if a2 ≤ |x| < a3

a1(a2 + a3 − a1), if a3 ≤ |x|.
(3)

• Here, the differentiable κ(x) reduces the effect of abnormally large
values in scale estimation by flattening values of |x| ≥ a3 to the
constant.
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Robust estimation of the scatter function

• Then we apply the method of moments approach, specifically calculate
σ̂2

R(·) in (2) by

σ̂2
Rκ{Z

∗
i (s) + Z∗i (t)} =

∑
i∈Ds,t

κ{Z∗i (s) + Z∗i (t)}/
n∑

i=1

δi(s)δi(t) (4)

and similarly for σ̂2
Rκ{Z

∗
i (s)− Z∗i (t)} to obtain τ̂n(s, t).

• Since the resulting robust correlation matrix based on pairwise
computation is not necessarily positive semidefinite, we adopt the
orthogonalized calculation, proposed by Maronna and Zamar (2002), to
yield positive definite and approximately affine-equivariant matrix
estimates.

• Furthermore, we apply the two-dimensional smoothing on it, such as
kernel smoother, to ensure the smooth estimates of the scatter function.
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Functional principal component analysis through scatter
function

• Based on the eigenanalysis of the estimated scatter function, we recover
lower-dimensional subspace of the data using derived eigenfunctions,
φ̂k(t), for k ∈ {1, . . . ,K}, and further reconstruct random trajectories
using estimated FPC scores.

• Let ξi,k be the k-th score of the i-th trajectory, for k ∈ {1, . . . ,K} and
i ∈ {1, . . . , n}.

• To deal with missing segments, we adopt Yao et al. (2005) and estimate
ξi,k using conditional expectation of the elliptical distribution.
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Functional principal component analysis through scatter
function

• First, we evaluate Xi = {Xi(ti1), . . . ,Xi(tini )}T through a set of discrete
grids {ti1, . . . , tini} ∈ Ii, and use the same grids to obtain
φ̂ik = {φ̂k(ti1), . . . , φ̂k(tini )}T , µ̂i = {µ̂n(ti1), . . . , µ̂n(tini )}T , and
Γ̂i ∈ Rni×ni be the matrix with (`, j)-th element equal to√
γ̂n(til)

√
γ̂n(tij)τ̂n(til, tij).

• Then we calculate ξ̂i,k = λ̂kφ̂
T
ikΓ̂
−1
i (Xi − µ̂i).

• Finally, the reconstruction of trajectories for the entire domain, using
the first K eigenfunctions, is written as

Ŷi(t) = µ̂n(t) +

K∑
k=1

ξ̂i,kφ̂k(t), (5)

for t ∈ I, and i ∈ {1, . . . , n}.
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Simulation Study

Simulation setting
• We extend the simulation settings of Delaigle et al. (2021) to generate

the data under three types of functional tail-behaviors and further apply
a part of the simulation setting of Kraus (2015) to form a partially
sampled structure.

• 100 independent curves are generated from X(t), t ∈ [0, 1], under zero
mean and covariance function C(s, t) =

∑4
i=1 0.5i−1φi(s)φi(t), where

φ1(t) = 1, φ2(t) =
√

3(2t − 1), φ3(t) =
√

5(6t2 − 6t + 1), and
φ4(t) =

√
7(20t3 − 30t2 + 12t − 1).

• We consider the following three distributions:
(i) Gaussian process
(ii) t(3) process

(iii) Gaussian process with 10%-contamination
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Simulation Study

Comparison methods

1 Sparse FPCA (Yao et al., 2005): FPCA for the sparse longitudinal data.

2 Kraus (Kraus, 2015): FPCA for partially observed functional data. It
reconstructs the missing trajectories through the functional linear ridge
regression.

3 Robust FPCA (Boente and Salibián Barrera, 2021): Robust FPCA for
sparse longitudinal data based on the estimation of robust scale surface.
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Simulation Study

Evaluation measure
• Eigen MISE : Mean integrated squared error (MISE) of the

eigenfunctions, defined as K−1∑K
k=1
∫
{φk(t)− φ̂k(t)}2dt, where φk(t)

and φ̂k(t)
• Eigen angle : Eigenfunction angle that measures the angle between true

and estimated eigenfunction of the data, defined as
K−1∑K

k=1 angle(φk, φ̂k).
• Reconst. MISE : MISE of reconstruction, defined as
|B|−1∑

i∈B
∫

t∈I{Yi(t)− Ŷi(t)}2dt, where B = {1, . . . , n} under the
cases (i) and (ii), while a set of indices of trajectories without
contamination under (iii)

• Comp. MISE : MISE of completion, defined as
|B|−1∑

i∈B
∫

t∈Mi
{Yi(t)− Ŷi(t)}2dt, to examine the reconstruction

performance for unobserved trajectories Mi.
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Simulation Results
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Figure 2: Completion of the randomly selected curve from simulated data generated from (i)
Gaussian process and (ii) t(3) process, (iii) Gaussian process with 10%-contamination.
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Simulation Results
Table 1: Average and standard error from simulation. Boldface indicates the best performance.

Method Eigen MISE Eigen angle Reconst. MISE Comp. MISE

(i) Gaussian process

Sparse FPCA 0.060 (0.039) 0.216 (0.066) 0.023 (0.062) 0.128 (0.370)
Kraus 0.067 (0.047) 0.227 (0.072) . 0.217 (0.195)

Robust FPCA 0.132 (0.041) 0.309 (0.062) 0.064 (0.019) 0.224 (0.100)
Proposed FPCA 0.029 (0.009) 0.154 (0.031) 0.019 (0.011) 0.057 (0.049)

(ii) t(3) process

Sparse FPCA 0.231 (0.231) 0.407 (0.194) 0.099 (0.253) 0.564 (1.302)
Kraus 0.268 (0.258) 0.443 (0.206) . 2.469 (2.964)

Robust FPCA 0.146 (0.048) 0.327 (0.066) 0.195 (0.117) 0.745 (0.523)
Proposed FPCA 0.030 (0.010) 0.158 (0.031) 0.049 (0.032) 0.139 (0.140)

(iii) Gaussian process with 10% contamination

Sparse FPCA 1.509 (0.404) 1.265 (0.250) 0.879 (0.398) 1.552 (1.476)
Kraus 1.799 (0.103) 1.440 (0.051) . 2.401 (0.500)

Robust FPCA 0.134 (0.043) 0.320 (0.065) 0.060 (0.022) 0.202 (0.105)
Proposed FPCA 0.030 (0.011) 0.156 (0.033) 0.022 (0.012) 0.067 (0.056)
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Real data application

• We illustrate the practical utility of the proposed FPCA method through
an analysis of South Korea’s air pollution monitoring data1, which
consists of hourly measurements of PM10 concentration from 336
weather monitoring stations in 2017.

• For each location and day of March 2017, we have functional time series
PM10 data of length 24 with the presence of abnormal trajectories, and
some trajectories are partially observed due to the system malfunction.

• The average missing ratio in the whole data is 2.85%, and for partially
observed data, on average, 14.3% are missing.

• The aim of the analysis is to detect locations with frequent atypical
concentration trends.

1AIRKOREA (https://www.airkorea.or.kr/web)
Real data application 20 / 25
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Real data application

Seoul

Yeosu

Figure 3: Locations of 336 weather monitoring stations in South Korea (gray circles) and
observed PM10 levels in selected two locations, Hwa-sung (top-left) and Yeosu (bottom-right).
Highlighted trajectory in each panel is one example of the partially observed trajectories.
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Real data application
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Figure 4: Detected outlying trajectories (red solid lines) based on the first PC scores from each
method.
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Conclusion

• In this study, we propose to perform the robust FPCA by considering
partially observed heavy-tailed functional data as filtered elliptical
stochastic processes.

• We specifically adopt the marginal M-estimators for location and scale
functions estimation and pairwise robust covariance computation
method for correlation function estimation to collectively build the
robust scatter function estimates.

• We demonstrate the performance of our approach in lower-space
recovery and reconstruction under various simulation settings.

• Since multivariate functional data is commonly observed, the proposed
method can be extended to the multivariate version, and we left for
future work.
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Sinova, B., González-Rodrı́guez, G., and Van Aelst, S. (2018). M-estimators of location for
functional data. Bernoulli, 24(3):2328–2357.

Wilcox, R. (2013). Introduction to Robust Estimation and Hypothesis Testing. Academic Press,
4 edition.

Yao, F., Müller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal
data. Journal of the American Statistical Association, 100(470):577–590.

Reference 24 / 25



Thank You!

25 / 25


