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Introduction

e Let X be a second order random process on Z = [0, 1] C R with mean
w(t) = E(X(t)) and covariance C(s,t) = Cov(X(s), X (t)).
e The observed data are
Yi(t) = X;(t) +€(t), t€0;, i=1,...,n,
where O; is the observed periods of X;, and ¢;(¢) is the homoscedastic random
noise with E(e;(t)) = 0 and E(e;(t)?) = o3.
e The goal of this study is to investigate robust covariance estimation for partially

observed functional data when data is affected by outlying curves with
heavy-tailed noises or spikes.

~ < Ny
~
o N LR
-=--" ANEEN
I N
INIRY

Figure 1: Example of partially observed functional data.



Marginal M-estimator for mean and covariance

e Marginal M-estimator for mean

A () = argmin > 6 (0)p (Xs(t) — ), (1)

=il

where §;(t) = 1;c0, and p(-) is the bounded loss function. In this study, we use
Huber function.

e Marginal M-estimator for covariance
&M (s,t) = argmin Y Ui(s,)p ({Xi(s) — A2 (IHXu(t) — 2 (0} —0) , (2)
i=1
where U;(s,t) = ;(s)d;(t), and

A (1) = argmin 3" Us(s, 0o (Xi() — ).
=1



Trimmed estimator for noise variance

e Trimmed estimator for noise variance
We simply modify the noise variance estimator in Lin and Wang (2020).
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where D = {i € N: m > Yiltg)? Ly, 4y <ny < Q0.75)}, and Q(a)
is the quantile of the LHS, and m; is the number of observed timepoints of X.
Then, the noise variance estimator is

= (Ao — A1)/B, 3)

and it provides always positive.



Application

e Functional principal component analysis (FPCA)
Let ith observed curve Y; = (Y;1,.. .,Yimi)T, and its empirical mean and
covariance are f1; = ((Ti1)s - - s t(Tim,;) T,
ﬁyi . 10m) = &M(Tij,Tu) + &ngm —1;,, respectively. Under the Gaussian
assumption, FPC score is estimated by conditional expectation as follows:

AN ¢ AT =1 X
Sik = Bl&ik|Y ] = My Dy (Yi — i),

where Ay, is the kth largest eigenvalue, ¢;;, = (¢ (Ti1), - . ., &1 (Tim,; )T is the
corresponding orthonormal eigenfunction.

e Completion
The completion for missing parts is obtained as follows:

K
Xi(t) = pt) + Y Edr(t), te€ M, (4)
k=1

where K is the number of FPCs and M; = Z \ O; is the missing period of ith
observed curve Y';.



Numerical Experiment

e Non-contaminated case :
We generate n = 100 curves on 51 regular grids on a compact interval [0, 1], and
each curve X;(t), ¢ =1,...,n are normally distributed with mean zero and
covariance C(s,t) which is defined as

4
Cs,t) = 0.5 g;(s)i(t),
i=1
where ¢1(t) = 1, ¢a(t) = (2t — 1)V/3, ¢3(t) = (6t> — 6t + 1)+/5, and
¢a(t) = (20t3 — 30t% + 12t — 1)v/7. To make data partially observed, we generate
the missing part of the ith curve M; as the form of
M; = [C; — B;, Ci + Ei| N [0, 1] with C; = U;,> and E; = 4Uj 2, where
U;,1,U; 2 are i.i.d. uniformly distributed on [0, 1], and 3, are constant values. In
this simulation, we set 5 = 1.4 and v = 0.2.
e Contaminated case :

Randomly selected 20% of the total n curves, X;, i € E, are affected by extreme
spikes as follows:

Xi(t) = p(t) +¢() , i €E,

where p(t) = 0 for all ¢, and ¢(t) is Cauchy process with white noise scale
parameter.
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Figure 2: Completion results of the non-contaminated and contaminated cases for the randomly

selected curve.

Method

Non-contaminated

Contaminated

Yao et al. (2005)
Lin (2020) + Huber
Kraus (2015)
M-est
M-est (smooth)

0.53 (1.95)
0.05 (0.03)
0.03 (0.02)
0.03 (0.02)
0.02 (0.01)

0.94 (2.42)
0.34 (0.17)
2.64 (0.64)
0.26 (0.13)
0.03 (0.02)

Table 1: Average mean integrated squared error (MISE) and its standard errors of completion

using 5 FPCs from 50 repetitions.




Conclusion

e In this study, we investigate the robust covariance estimation based on the
M-estimator for partially observed functional data.

e Numerical experiments showed that proposed method provides a stable and
robust estimation when the data is contaminated by extreme noises or spikes.

e Investigating theoretical properties and real data analysis are under way.



