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Introduction

• Let X be a second order random process on I = [0, 1] ⊂ R with mean

µ(t) = E(X(t)) and covariance C(s, t) = Cov(X(s), X(t)).

• The observed data are

Yi(t) = Xi(t) + εi(t), t ∈ Oi, i = 1, . . . , n,

where Oi is the observed periods of Xi, and εi(t) is the homoscedastic random

noise with E(εi(t)) = 0 and E(εi(t)
2) = σ2

0 .

• The goal of this study is to investigate robust covariance estimation for partially

observed functional data when data is affected by outlying curves with

heavy-tailed noises or spikes.
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Figure 1: Example of partially observed functional data.

2



Marginal M-estimator for mean and covariance

• Marginal M-estimator for mean

µ̂M (t) = argmin
θ

n∑
i=1

δi(t)ρ (Xi(t)− θ) , (1)

where δi(t) = 1t∈Oi
and ρ(·) is the bounded loss function. In this study, we use

Huber function.

• Marginal M-estimator for covariance

σ̂M (s, t) = argmin
θ

n∑
i=1

Ui(s, t)ρ
(
{Xi(s)− µ̂Mst (s)}{Xi(t)− µ̂Mst (t)} − θ

)
, (2)

where Ui(s, t) = δi(s)δi(t), and

µ̂Mst (t) = argmin
θ

n∑
i=1

Ui(s, t)ρ (Xi(t)− θ) .
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Trimmed estimator for noise variance

• Trimmed estimator for noise variance

We simply modify the noise variance estimator in Lin and Wang (2020).

Â0 =
1

|D|
∑
i∈D

1

mi(mi − 1)

∑
j 6=l

Yi(tj)
21|tj−tl|<h0 ,

Â1 =
1

|D|
∑
i∈D

1

mi(mi − 1)

∑
j 6=l

Yi(tj)Yi(tl)1|tj−tl|<h0 ,

B̂ =
1

|D|
∑
i∈D

1

mi(mi − 1)

∑
j 6=l

1|tj−tl|<h0 ,

where D = {i ∈ N : 1
mi(mi−1)

∑
j 6=l Yi(tj)

21|tj−tl|<h0 < Q(0.75)}, and Q(α)

is the quantile of the LHS, and mi is the number of observed timepoints of Xi.

Then, the noise variance estimator is

σ̂2
0 = (Â0 − Â1)/B̂, (3)

and it provides always positive.
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Application

• Functional principal component analysis (FPCA)

Let ith observed curve Y i = (Yi1, . . . , Yimi )
T , and its empirical mean and

covariance are µ̂i = (µ(Ti1), . . . , µ(Timi )
T ,

Σ̂Y i
(Tij , Til) = σ̂M (Tij , Til) + σ̂2

01Tij=Til
, respectively. Under the Gaussian

assumption, FPC score is estimated by conditional expectation as follows:

ξ̂ik = Ê[ξik|Y i] = λ̂kφ̂
T
ikΣ̂
−1

Y i
(Y i − µ̂i),

where λ̂k is the kth largest eigenvalue, φ̂ik = (φk(Ti1), . . . ,φk(Timi ))
T is the

corresponding orthonormal eigenfunction.

• Completion

The completion for missing parts is obtained as follows:

X̂i(t) = µ̂(t) +
K∑
k=1

ξ̂ikφ̂k(t), t ∈Mi, (4)

where K is the number of FPCs and Mi = I \Oi is the missing period of ith

observed curve Y i.
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Numerical Experiment

• Non-contaminated case :

We generate n = 100 curves on 51 regular grids on a compact interval [0, 1], and

each curve Xi(t), i = 1, . . . , n are normally distributed with mean zero and

covariance C(s, t) which is defined as

C(s, t) =
4∑
i=1

0.5i−1φi(s)φi(t),

where φ1(t) = 1, φ2(t) = (2t− 1)
√
3, φ3(t) = (6t2 − 6t+ 1)

√
5, and

φ4(t) = (20t3 − 30t2 +12t− 1)
√
7. To make data partially observed, we generate

the missing part of the ith curve Mi as the form of

Mi = [Ci − Ei, Ci + Ei] ∩ [0, 1] with Ci = βU
1/2
i,1 and Ei = γUi,2, where

Ui,1, Ui,2 are i.i.d. uniformly distributed on [0, 1], and β, γ are constant values. In

this simulation, we set β = 1.4 and γ = 0.2.

• Contaminated case :

Randomly selected 20% of the total n curves, Xi, i ∈ E, are affected by extreme

spikes as follows:

Xi(t) = µ(t) + ζ(t) , i ∈ E,

where µ(t) = 0 for all t, and ζ(t) is Cauchy process with white noise scale

parameter.
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Numerical Experiment
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Figure 2: Completion results of the non-contaminated and contaminated cases for the randomly

selected curve.

Method Non-contaminated Contaminated

Yao et al. (2005) 0.53 (1.95) 0.94 (2.42)

Lin (2020) + Huber 0.05 (0.03) 0.34 (0.17)

Kraus (2015) 0.03 (0.02) 2.64 (0.64)

M-est 0.03 (0.02) 0.26 (0.13)

M-est (smooth) 0.02 (0.01) 0.03 (0.02)

Table 1: Average mean integrated squared error (MISE) and its standard errors of completion

using 5 FPCs from 50 repetitions.
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Conclusion

• In this study, we investigate the robust covariance estimation based on the

M-estimator for partially observed functional data.

• Numerical experiments showed that proposed method provides a stable and

robust estimation when the data is contaminated by extreme noises or spikes.

• Investigating theoretical properties and real data analysis are under way.
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