Robust covariance estimation for partially observed functional data

Hyunsung Kim¹ · Yaeji Lim¹ · Yeonjoo Park² July 21, 2021

 1 Department of Statistics, Chung-Ang University 2 Department of Management Science and Statistics, The University of Texas at San Antonio

Introduction

- Let X be a second order random process on $\mathcal{I} = [0, 1] \subset \mathbb{R}$ with mean $\mu(t) = E(X(t))$ and covariance C(s, t) = Cov(X(s), X(t)).
- The observed data are

$$Y_i(t) = X_i(t) + \epsilon_i(t), \quad t \in O_i, \quad i = 1, \dots, n,$$

where O_i is the observed periods of X_i , and $\epsilon_i(t)$ is the homoscedastic random noise with $E(\epsilon_i(t)) = 0$ and $E(\epsilon_i(t)^2) = \sigma_0^2$.

 The goal of this study is to investigate robust covariance estimation for partially observed functional data when data is affected by outlying curves with heavy-tailed noises or spikes.

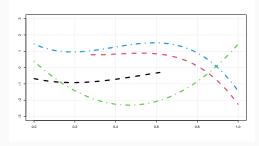


Figure 1: Example of partially observed functional data.

• Marginal M-estimator for mean

$$\hat{\mu}^{M}(t) = \arg\min_{\theta} \sum_{i=1}^{n} \delta_{i}(t) \rho\left(X_{i}(t) - \theta\right), \tag{1}$$

where $\delta_i(t)=\mathbf{1}_{t\in O_i}$ and $\rho(\cdot)$ is the bounded loss function. In this study, we use Huber function.

• Marginal M-estimator for covariance

$$\hat{\sigma}^{M}(s,t) = \arg\min_{\theta} \sum_{i=1}^{n} U_{i}(s,t) \rho\left(\{X_{i}(s) - \hat{\mu}_{st}^{M}(s)\}\{X_{i}(t) - \hat{\mu}_{st}^{M}(t)\} - \theta\right),$$
(2)

where $U_i(s,t) = \delta_i(s)\delta_i(t)$, and

$$\hat{\mu}_{st}^{M}(t) = \arg\min_{\theta} \sum_{i=1}^{n} U_{i}(s,t) \rho\left(X_{i}(t) - \theta\right).$$

Trimmed estimator for noise variance

• Trimmed estimator for noise variance

We simply modify the noise variance estimator in Lin and Wang (2020).

$$\hat{A}_{0} = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \frac{1}{m_{i}(m_{i}-1)} \sum_{j \neq l} Y_{i}(t_{j})^{2} \mathbf{1}_{|t_{j}-t_{l}| < h_{0}},$$
$$\hat{A}_{1} = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \frac{1}{m_{i}(m_{i}-1)} \sum_{j \neq l} Y_{i}(t_{j}) Y_{i}(t_{l}) \mathbf{1}_{|t_{j}-t_{l}| < h_{0}},$$
$$\hat{B} = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \frac{1}{m_{i}(m_{i}-1)} \sum_{j \neq l} \mathbf{1}_{|t_{j}-t_{l}| < h_{0}},$$

where $\mathcal{D} = \{i \in \mathbb{N} : \frac{1}{m_i(m_i-1)} \sum_{j \neq l} Y_i(t_j)^2 \mathbf{1}_{|t_j-t_l| < h_0} < Q(0.75)\}$, and $Q(\alpha)$ is the quantile of the LHS, and m_i is the number of observed timepoints of X_i . Then, the noise variance estimator is

$$\hat{\sigma}_0^2 = (\hat{A}_0 - \hat{A}_1)/\hat{B},$$
(3)

and it provides always positive.

Application

• Functional principal component analysis (FPCA)

Let *i*th observed curve $\boldsymbol{Y}_i = (Y_{i1}, \ldots, Y_{im_i})^T$, and its empirical mean and covariance are $\hat{\boldsymbol{\mu}}_i = (\boldsymbol{\mu}(T_{i1}), \ldots, \boldsymbol{\mu}(T_{im_i})^T, \hat{\boldsymbol{\Sigma}}_{\boldsymbol{Y}_i}(T_{ij}, T_{il}) = \hat{\sigma}^M(T_{ij}, T_{il}) + \hat{\sigma}_0^2 \mathbf{1}_{T_{ij} = T_{il}}$, respectively. Under the Gaussian assumption, FPC score is estimated by conditional expectation as follows:

$$\hat{\xi}_{ik} = \widehat{E}[\xi_{ik}|\boldsymbol{Y}_i] = \hat{\lambda}_k \hat{\boldsymbol{\phi}}_{ik}^T \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{Y}_i}^{-1} (\boldsymbol{Y}_i - \hat{\boldsymbol{\mu}}_i),$$

where $\hat{\lambda}_k$ is the *k*th largest eigenvalue, $\hat{\phi}_{ik} = (\phi_k(T_{i1}), \dots, \phi_k(T_{im_i}))^T$ is the corresponding orthonormal eigenfunction.

Completion

The completion for missing parts is obtained as follows:

$$\widehat{X}_{i}(t) = \widehat{\mu}(t) + \sum_{k=1}^{K} \widehat{\xi}_{ik} \widehat{\phi}_{k}(t), \quad t \in M_{i},$$
(4)

where K is the number of FPCs and $M_i = \mathcal{I} \setminus O_i$ is the missing period of *i*th observed curve Y_i .

• Non-contaminated case :

We generate n = 100 curves on 51 regular grids on a compact interval [0, 1], and each curve $X_i(t)$, i = 1, ..., n are normally distributed with mean zero and covariance C(s, t) which is defined as

$$C(s,t) = \sum_{i=1}^{4} 0.5^{i-1} \phi_i(s) \phi_i(t),$$

where $\phi_1(t)=1,\ \phi_2(t)=(2t-1)\sqrt{3},\ \phi_3(t)=(6t^2-6t+1)\sqrt{5},$ and $\phi_4(t)=(20t^3-30t^2+12t-1)\sqrt{7}.$ To make data partially observed, we generate the missing part of the ith curve M_i as the form of $M_i=[C_i-E_i,C_i+E_i]\cap[0,1]$ with $C_i=\beta U_{i,1}^{1/2}$ and $E_i=\gamma U_{i,2},$ where $U_{i,1},U_{i,2}$ are i.i.d. uniformly distributed on [0, 1], and β,γ are constant values. In this simulation, we set $\beta=1.4$ and $\gamma=0.2.$

• Contaminated case :

Randomly selected 20% of the total n curves, $X_i,\ i\in\mathbb{E},$ are affected by extreme spikes as follows:

$$X_i(t) = \mu(t) + \zeta(t) , \ i \in \mathbb{E},$$

where $\mu(t)=0$ for all $t_{\rm r}$ and $\zeta(t)$ is Cauchy process with white noise scale parameter.

Numerical Experiment

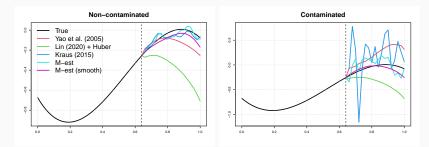


Figure 2: Completion results of the non-contaminated and contaminated cases for the randomly selected curve.

Method	Non-contaminated	Contaminated
Yao et al. (2005)	0.53 (1.95)	0.94 (2.42)
Lin (2020) + Huber	0.05 (0.03)	0.34 (0.17)
Kraus (2015)	0.03 (0.02)	2.64 (0.64)
M-est	0.03 (0.02)	0.26 (0.13)
M-est (smooth)	0.02 (0.01)	0.03 (0.02)

 Table 1: Average mean integrated squared error (MISE) and its standard errors of completion using 5 FPCs from 50 repetitions.

- In this study, we investigate the robust covariance estimation based on the M-estimator for partially observed functional data.
- Numerical experiments showed that proposed method provides a stable and robust estimation when the data is contaminated by extreme noises or spikes.
- Investigating theoretical properties and real data analysis are under way.