2. Tools for exploring functional data

2.1 Introduction

  • FDA의 notation과 concept 정의
  • FDA에서 사용하는 statistics 정의
  • Matrix decompositions, projections, and the constrained maximization of quadratic forms에 대한 자세한 내용은 Appendix 참고

2.2 Some notation

2.2.1 Scalars, vectors, functions and matrices

  • $x$ : a vector
    $\Rightarrow x_i$ : scalar (the elements of vector $x$)
  • $x$ : a function
    $\Rightarrow x(t)$ : scalar (the values of function $x$)
    $\Rightarrow x(\mathbf{t})$ : vector $\mathbf{t}$에 대한 function value ($p$-dim function)
  • If $x_i$ or $x(t)$ is a vector, we use $\mathbf{x}_i$ or $\mathbf{x}(t)$
  • Standard notation을 요약하여 사용
    • $\texttt{Temp}$ : a temperature record
    • $\texttt{Knee}$ : a knee angle
    • $\texttt{LMSSE}$ : a squared error fitting criterion for a linear model
    • $\texttt{RSQ}$ : a squared correlation measure.

2.2.2 Derivatives and integrals

  • $D$ : operator (함수 $x$를 함수 $Dx$로 변환하는 operator)
  • $D^m x$ : the derivative of order m of a function $x$ ($\frac{d^mx}{dt^m}$와 동일)
  • $D^0 x$ : $x$
    $s.t. \ D^{1}D^{-1}x=D^0x=x$,
    when $D^{-1}x$가 $x$의 부정적분(indefinite integral)
  • $\int x$ : $\int_{a}^{b} x(t)dt$ ($t$의 적분 범위가 clear할 때)

2.2.3 Inner products

  • Inner product for functions

    $$ \langle x,y \rangle = \int x(t)y(t)dt $$

  • $L_2$ norm

    $$ \lVert x \rVert^2=\langle x,x \rangle = \int x^2(t)dt $$

2.2.4 Functions of functions

  • functional composition (합성함수)

    $ x^*=x \circ h $

  • function value

    $ x^*(t)=(x \circ h)(t)=x[h(t)] $

  • inverse function $h^{-1}$

    $$ (h \circ h^{-1})(t)=(h^{-1} \circ h)(t)=t $$

  • functional transformations operations (or operators) ex) $D$ : $x \rightarrow Dx$

2.3 Summary statistics for functional data

2.3.1 Functional means and variances

  • Mean function

    $$ \bar{x}(t)=\frac{1}{N}\sum_{i=1}^{N}x_i(t) $$

  • Variance function

    $$ Var_X(t)=\frac{1}{N-1}\sum_{i=1}^{N}[x_i(t)-\bar{x}(t)]^2 $$

2.3.2 Covariance and correlation functions

  • Covariance function

    $$ Cov_X(t_1, t_2)=\frac{1}{N-1}\sum_{i=1}^{N}{x_i(t_1)-\bar{x}(t_1)}{x_i(t_2)-\bar{x}(t_2)} $$

  • Correlation function

    $$ Corr_X(t_1, t_2)=\frac{Cov_X(t_1, t_2)}{\sqrt{Var_X(t_1)Var_X(t_2)}} $$

2.3.3 Cross-covariance and cross-correlation functions

  • Cross-covariance function

    $$ Cov_{X,Y}(t_1, t_2)=\frac{1}{N-1}\sum_{i=1}^{N}{x_i(t_1)-\bar{x}(t_1)}{y_i(t_2)-\bar{y}(t_2)} $$

  • Cross-correlation function

    $$ Corr_{X,Y}(t_1, t_2)=\frac{Cov_{X,Y}(t_1, t_2)}{\sqrt{Var_X(t_1)Var_Y(t_2)}} $$

Cantour plots of cross-correlation functions

Cantour plots of correlation functions

8. Principal components analysis for functional data

8.1 Introduction

  • 전처리와 시각화 후, data의 특성을 파악하기 위해 PCA를 사용
  • Classical multivariate anlaysis에서는 variance-covariance와 correlation을 설명하기 힘든 경우가 많음
  • PCA는 유용한 정보를 담고 있는 covariance structure를 파악하는데 도움을 준다.
  • PCA를 통해 이후의 분석에서 발생할 수 있는 문제를 사전에 고려할 수 있다. (ex - multicollinearity)
  • FPCA(functional PCA)는 smoothing 되어있는 경우에 특성이 더 잘 나타난다. (smoothing 과정에서 regularization issue 발생)

8.2 Defining functional PCA

8.2.1 PCA for multivariate data

Concept of multivariate PCA

  • Linear combination of X

    $$ f_i = \sum_{j=1}^{p}\beta_j x_{ij}, \ i=1,…,N $$

    where $\beta_j$ : weighting coefficient, $x_{ij}$ : $i$th obs of $j$th variable

  • Vectorized form

    $$ f_i = \boldsymbol{\beta}^{'} \mathbf{x}_i, \ i=1,…,N $$

    where $ \boldsymbol{\beta}=(\beta_1,…,\beta_p)^{'}, ~ \mathbf x_i=(x_{i1},…,x_{ip})^{'} $

How to find PC

  1. Find the weight vector $\xi_1 = (\xi_{11},…,\xi_{p1})^{'}$ for

    $$ f_{i1}=\sum_j \xi_{j1}x_{ij}=\boldsymbol{\xi}_1^{'} \mathbf{x}_i $$

    s.t. maximize $ \frac{1}{N}\sum_if_{i1}^2 $ subject to $\sum_j \xi_{j1}^2 = \lVert \xi_1 \rVert^2 = 1 $

  2. 1번 과정을 반복하며 동시에

    $$ \sum_j \xi_{jk}\xi_{jm} = \boldsymbol{\xi}_k^{'} \boldsymbol{\xi}_m=0, \ k<m $$

    을 만족하는 $ \xi_2,…,\xi_m $을 찾는다.

Summary

  1. Mean square(변수들 간 variation)를 maximize하는 방향의 unit vector $\boldsymbol{\xi}_1 $을 찾는다.
  2. 2nd PC부터는 mean square를 maximize함과 동시에 이전 PC loading($ \boldsymbol{\xi}_i $)과 orthogonal한 $ \boldsymbol{\xi}_2,…\boldsymbol{\xi}_k \ (k<p) $을 찾는다.
  • Data의 mean을 뺀 후에 PCA를 하는 것이 일반적이다. (Centering $\Rightarrow \max MS(f_{ij}) = \max Var(f_{ij}) $)
  • Weight vector $\boldsymbol{\xi}_i$는 unique하지 않다. (Sign change)
  • PC score $f_{im}$은 특정 사례 또는 반복실험의 특징 측면에서 변동(variation)의 의미를 설명하는데 도움을 준다.

8.2.2 Defining PCA for functional data

Concept of functional PCA

  • Inner product of integration version is defined by

    $$ \int \beta x = \int \beta(s) x(s) ds $$

  • PC score

    $$ f_i = \int \beta x_i = \int \beta(s) x_i(s) ds $$

    where $\beta$ : weight function

How to find functional PCA

  1. Find the weight function $\xi_1(s)$ for

    $$ f_i = \int \xi_1(s) x_i(s) ds $$

    s.t. maximize $ \frac{1}{N}\sum_i f_{i1}^2 = \frac{1}{N}\sum_i (\int \xi_1 x_i)^2 $
    subject to $ \lVert \xi_1 \rVert^2 =\int \xi_1(s)^2ds = \int \xi_1^2 = 1 $

  2. 1번 과정을 반복하며 동시에

    $$ \int \xi_k \xi_m=0, \ k<m $$

    을 만족하는 $ \xi_2,…,\xi_m $을 찾는다.

Summary

  1. Mean square를 maximize하는 방향이고 $ \lVert \xi_1 \rVert^2=1 $인 function $\xi_1(s) $를 찾는다.
  2. 2nd PC부터는 mean square를 maximize함과 동시에 이전 PC loading($ \xi_1(s) $)와 orthogonal한 $ \xi_2(s),…\xi_k(s) \ (k<p) $을 찾는다.
  • Data의 mean을 뺀 후에 PCA를 하는 것이 일반적이다. (Centering $\Rightarrow \max MS = \max Var $)
  • Weight function $\xi_i(s)$는 unique하지 않다. (Sign change)

8.2.3 Defining an optimal empirical orthonormal basis

  • We want to find $K$ orthonormal functions $\xi_m$.

  • 즉, expansion했을 때 각 curve에 가장 잘 근사하는 $K$개의 orthonormal basis functions를 찾고 싶다!

  • Expansion by the orthonormal basis functions

    $$ \hat x_i(t) = \sum_{k=1}^K f_{ik}\xi_k(t), $$

    where $ f_{ik} $ is the principal component value $\int x_i\xi_k$

  • Measure of approximation ($\texttt{PCASSE}$)

    $$ \texttt{PCASSE} = \sum_{i=1}^N \lVert x_i-\hat{x}_i \rVert^2 $$

    where $ \lVert x_i-\hat{x}_i \rVert^2=\int [x(s) - \hat{x}(s)]^2 ds $ (integrated squared error)

  • Optimal orthonormal basis function = weight function $\xi_m$

    $$ \xi_m = \arg\min_\xi \texttt{PCASSE} $$

    where $\xi_m$ : empirical orthonormal functions

8.2.4 PCA and eigenanalysis

Multivariate PCA

  • Assumtion : $x_{ij}$ is centerized. ($x_{ij} - \frac{1}{N}\sum_i x_{ij}$)

  • Mean square criterian for finding the 1st PC

    $$ \max_{\boldsymbol{\xi^{'}\xi}=1}\frac{1}{N} \boldsymbol{\xi^{'}X^{'}X\xi} $$

  • Substitute variance-covariance matrix

    $$ \max_{\boldsymbol{\xi^{'}\xi}=1} \boldsymbol{\xi^{'}V\xi} $$

    where $\mathbf{V} = N^{-1}\mathbf{X^{'}X} $ is a $p \times p$ sample var-cov matrix
    $\Rightarrow$ We can solve maximization problem using eigen decomposition!

  • Eigen equation

    $$ \boldsymbol{V\xi} = \rho\boldsymbol{\xi} $$

    where $ \rho $ is largest eigen value

  • 위 식을 풀면 $ (\rho_j,\boldsymbol{\xi}_j) $ pairs가 생기고, 각 $\boldsymbol{\xi}_j$는 orthogonal하다.

  • $\mathbf{V}$ has $\min{p,N-1}$ nonzero eigen values $\rho_j$
    $(\because \max(rank(\mathbf{X}))=N-1)$

  • $ \boldsymbol \xi_j $ satisfied maximization problem and the orthogonal constraints ($ \xi_j \perp (\xi_1, \cdots, \xi_{j-1}) $) for $\forall j$
    $\Rightarrow$ $\boldsymbol{\xi}$ is a solution of PCA

Functional PCA

  • Assumtion : $x_i(t)$ is centerized. ($x_i(t) - \frac{1}{N}\sum_i x_i(t)$)

  • Covariance function

    $$ v(s,t) = \frac{1}{N}\sum_{i=1}^N x_i(s)x_i(t) $$

  • Each of PC weight functions $\xi_j(s)$ satisfies

    $$ \int v(s,t)\xi(t) dt = \rho \xi(s) $$

    where $LHS$ is an integral transform $V$ of the weight function $\xi$ defined by $ V\xi = \int v(\cdot,t)\xi(t) dt $ (covariance operator $V$)

  • Eigen equation using covariance operator $V$

    $$ V\xi = \rho\xi $$

    where $\xi$ is an eigen function

Difference between multivariate and functional eigen analysis problems

  • $\max${# of different eigen pairs}가 다르다
    • multivariate : # of variables = $p$
    • functional : # of functions = $\infty$ ($\because$ smoothed)
      but if $x_i$ are linearly independent, $rank(V)=N-1$ and only $N-1$ nonzero eigen values exist.

Summary - Comparison between MPCA and FPCA

Multivariate PCA

  • PC score

    $$ f_i = \sum_{j=1}^p \xi_j x_{ij} $$

  • Objective function

    $$ Var(\xi_j) = \frac{1}{N}\sum_i f_{ij}^2 $$

  • Constraints

    $$ \lVert\xi_i\rVert^2= \sum_j \xi_{ji}^2 = 1 $$

    $$ \sum_j \xi_{jk}\xi_{jm}=\boldsymbol{\xi}_k^{'}\boldsymbol{\xi}_m=0 $$

Functional PCA

  • PC score

    $$ f_i = \int \xi(s) x_i(s) ds $$

  • Objective function

    $$ \frac{1}{N}\sum_i f_{ij}^2 = \frac{1}{N}\sum_i (\int \xi_j x_i)^2 $$

  • Constarints

    $$ \lVert\xi_i\rVert^2=\int \xi_i(s)^2 ds = 1 $$

    $$ \int \xi_k\xi_m=0 $$

Reference

  • Ramsay. & Silverman. (2005), Functional Data Analysis 2nd edition. Springer